Development of an interface-aware, higher-order-accurate transport scheme for reservoir simulation

Research Problem
The combination of discontinuities of geological interface and strong non-linear behaviours of two-phase flow yields difficulties in predicting the flow pattern.

Research Objective
1. Extending the hybrid Finite Element – Finite Volume Method (FEFVM) to correctly represent the geological discontinuities.
2. Developing numerical algorithm to
 - Capture quick coupled/de-coupled state of flow variables at material interfaces.
 - Work with complex geometry such as multiple material layers or branched interfaces.
 - Work for all multi-dimensional 1D, 2D and 3D models.

![Image 1](image1.png)

Fig 1. Two different discretization methods for three regions R_1, R_2 and R_3 and their interfaces I_{1-2}, I_{1-3} and I_{2-3}: (a) FEFVM and (b) DFEFVM. The discontinuities were introduced by inserting new nodes N_{11}, N_{12}, N_{13} and N_{14}.

![Image 2](image2.png)

Fig 2. The infiltration of dense non-aqueous phase liquid (DNAPL) into low permeable lens. Material heterogeneity results discontinuities on saturation field at material interfaces.

![Image 3](image3.png)

Fig 3. The effects of entry pressure of the lens on DNAPL flow pattern. Low entry pressure on the left and high entry pressure on the right.

More Information

Author: Luat Khoa Tran
Email: luatkhoat@student.unimelb.edu.au
Supervisors: Prof. Stephan K. Matthai, Dr. Joe Berry
Discipline: Civil Engineering