Prioritisation strategy for seismic retrofitting of reinforced concrete buildings in Australia

Research aims

Developing a methodology, specifically suited for Australian buildings, for the evaluation and prioritization of existing vulnerable RC buildings, in order to propose suitable cost-effective retrofitting strategies.

Three-tiered methodology

The methodology will provide significant time-savings in the vulnerability assessment of RC buildings. Retrofitting strategies will be proposed for the different vulnerable buildings identified.

Research significance

The development of simple framework to assess the potential risk and identify the need of retrofitting for the existing RC buildings in Australia. Rapid seismic evaluation of existing Australian RC buildings, as performing detailed nonlinear analysis is computationally expensive when a large amounts of buildings need to be assessed.

Proposed future application

In addition, it can be used as a preliminary study for the development of Australian seismic evaluation and retrofit standards of the existing RC buildings.

Figure 1: Earthquake loading vs Displacement graph for a ductile and limited ductility building

Figure 2: Soft story building

Figure 3: Building is safe

Figure 4: Example building plan with vulnerable features of category A and B

Figure 5 (a, b): Example of analysis results from level 2 scan check

Non-structural component checklist

- Parapet
- Appendages
- Mechanical and electrical equipment
- Masonry chimneys
- Piping
- Stairs
- Ducts

Non-structural component checklist

- Partitions
- Masonry veneer
- Contents and furnishings
- Ceilings
- Light fixtures

More Information

Bin Xing
PhD Candidate
bxxi@student.unimelb.edu.au
C322 (Building 174) – Structural group
Department of Infrastructure Engineering
 Supervisors: Dr Elisa Lumantarna, Prof. Nelson Lam, & Dr Scott Menegon